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Abstract

Space-time coordinate transformations valid for arbitrarily long coordinate
time are derived from global Minkowski coordinates to the Fermi coor-
dinates of an observer moving in a circle in three-dimensional space. The
metric for the Fermi coordinates is calculated directly from the tensor trans-
formation rule. The Fermi coordinates are used in an examination (from the
observer’s reference frame) of the detailed behavior of ideal clocks.

A complicated relation exists between Fermi coordinate time and proper
time on stationary clocks (in the Fermi frame) and between proper time
on satellite clocks that orbit the observer. For portable clocks that orbit the
Fermi coordinate origin, an orbital Sagnac-like effect exists. The coordinate
speed of light is isotropic but is periodic in time and varies with Fermi coor-
dinate position. In a numerical illustration of the magnitudes of these kine-
matic effects, this report uses parameters relevant to clocks carried aboard
satellites orbiting the Earth.
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1. Background

The U.S. Army is developing precision-guided munitions intended to be
used against the threat of armored vehicles. These munitions have a cou-
pled GPS (Global Positioning System) and inertial guidance system. The
GPS portion of the system is intended to give precise updates to the iner-
tial system during mid-course flight. Such precision-guided munitions are
required to have a terminal accuracy of better than 1 m (corresponding to
the typical scale dimension of an armored vehicle). This means that the ac-
curacy of GPS position updates must be significantly better than 1 m in
order for the total system to perform at 1 m.

The Department of Defense (DoD) and the civilian population have nu-
merous other interests in precise navigation, such as aircraft instrument
approaches. Today, the stand-alone GPS is used routinely for nonprecision
instrument approaches. It would be a great advantage if the stand-alone
GPS could also be used for precision approaches.∗ Depending on the fu-
ture course of development of the GPS, such approaches could be feasible
for unmanned as well as manned aircraft, if the GPS were sufficiently accu-
rate and had a sufficient level of receiver autonomous integrity monitoring
(RAIM).†

In addition to these applications, DoD has numerous other needs for pre-
cise navigation, such as mapping safe corridors and positioning space-
based interferometers for surveillance of the ground. Another area where
the GPS needs ultra-high accuracy is for precise time transfer, which is nec-
essary for applications in communications encryption.

The current stand-alone GPS does not meet the accuracies needed in many
of the above-mentioned areas. At present, it is well known that small anoma-
lies exist in position and time computed from GPS data [1–3]. The origin of
these anomalies is not understood. In particular, GPS time transfer data
from the U.S. Naval Observatory (USNO) indicate that GPS time (for all
satellites) is periodic with respect to the Master Clock, which is the most

∗The FAA (Federal Aviation Administration) system known as WAAS (Wide Area Aug-
mentation System), which is to provide precision approaches to most airports in the U.S.,
is a differential GPS system. I am referring to the possibility of a precision approach system
based upon the stand-alone GPS, with no differential GPS corrections.
†For example, one could obtain an improvement in integrity over the present stand-

alone GPS by increasing the number of GPS satellites in view.
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accurate source of official time for DoD. Furthermore, the time obtained
from all GPS satellites appears to speed up and slow down in-phase [3]. In
1997, the periodicity of this effect was approximately equal to the sidereal
day and had a peak-to-peak amplitude of ≈20 ns, which translates to 20 ft
(≈6 m) of error in light travel time [3]. The existence of these anomalies in
GPS data motivates the theoretical investigation reported here.

The purpose of this work is to explore the possibility that the periodicity
in time between the GPS and the USNO Master Clock is a relativistic kine-
matic effect that is due to the way in which the GPS is implemented. If such
an explanation were to prove correct, then this effect could be taken into ac-
count, and the accuracy of the GPS would be improved. The work reported
here is only a first step in the analysis, because gravitational effects have
been neglected. As elaborated below, the gravitational field is an essential
ingredient in the analysis, but the formalism is sufficiently complicated that
it is useful to first explore the effects without the contribution of gravity.

The GPS is implemented in an Earth-centered quasi-inertial (ECQI) refer-
ence frame. This reference frame is not a relativistic space-time coordinate
system (as is required by a fully relativistic theory); instead, it is a spa-
tial reference system plus a time scale [4]. From the point of view of rel-
ativity theory, the GPS satellite clocks keep coordinate time in a modified
Schwarzschild metric [5], not the ECQI system of coordinates.

In this report, the ECQI frame coordinates are replaced by a Fermi-Walker
transported system of coordinates. The apparent behavior of real clocks
(i.e., the GPS satellites) is examined from the point of view of this coordi-
nate system.
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2. Introduction

It is well known that the choice of a particular space-time coordinate sys-
tem can lead to apparent effects that vanish when an alternative coordinate
system is used [6–9]. In this work, I report a detailed calculation of the ap-
parent behavior of ideal clocks as observed from a system of coordinates
whose origin moves in a circle in three-dimensional (3-d) space and whose
axes maintain their orientation with respect to the distant stars. Such a sys-
tem of coordinates is similar to that used to implement an Earth-centered
inertial frame of reference, as in astrodynamics applications [10,11]. How-
ever, the case treated here differs from that of the Earth-centered inertial
frame, in that gravitational effects are neglected. In this work, the origin of
coordinates is kept in circular motion by a force (such as that provided
by rocket engines), so the system of coordinates is accelerated but non-
rotating. I take a Fermi coordinate system as the closest relativistic ana-
logue to a nonrotating system of local Cartesian coordinates used in exper-
iments [6,10,11]. In particular, a Fermi coordinate system is a nonrotating
system of coordinates where Coriolis forces are absent and light travels es-
sentially along a straight line. I take the Fermi coordinate origin to move
in a circle in 3-d space, and therefore, the observer’s tetrad is Fermi-Walker
transported along a helical time-like world line.

In the tetrad formalism, laboratory measurements are interpreted as projec-
tions of tensors on the tetrad basis vectors. These projections are invariant
quantities under transformations of the space-time coordinates. However,
these projections depend on the world line of the observer and the choice
of local Cartesian axes used by the observer [6]. The need for the tetrad
formalism to relate experiment to theory, as well as the problem of measur-
able quantities in general relativity, is extensively discussed by Pirani [12],
Synge [6], Soffel [10], Brumberg [11], and more recently Guinot [9].

The tetrad formalism was initially investigated for the case of inertial ob-
servers that move on geodesics [12–17]. However, many observers are ter-
restrially based or are based on noninertial platforms. The general theory
for the case of noninertial observers has been investigated by Synge [6],
who considered nonrotating observers moving along a time-like world line,
and by others [18–23], who considered accelerated, rotating observers. For
arbitrary observer motions, the effects seen by the observer are indeed
very complicated, and the general theory [6,12–23] gives limited physical
insight.
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In this report, I work out in detail a simple model problem. I consider the
particular case of an observer moving in a circle in 3-d space. I use the tetrad
formalism to obtain the transformation from an inertial coordinate system
in Minkowski space-time to the accelerated, nonrotating system of Fermi
coordinates of an observer moving in a circle in 3-d space. I compute the
apparent behavior of ideal clocks as observed with respect to these Fermi
(laboratory) coordinates. The results are given here as expansions in low
velocity of the observer, compared with the speed of light. However, the
coordinate transformations derived here are not expanded in a power se-
ries in time, and hence they are valid for arbitrarily long times. Knowing
the correct long-time behavior of the coordinate transformations allows the
study of the apparent long-time behavior of clocks as observed with re-
spect to the Fermi coordinates of the observer. In a numerical example of
the magnitude of the effects, I use parameters relevant to clocks carried
aboard GPS satellites orbiting the Earth [24].
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3. Fermi-Walker Transport Differential Equations

Consider a time-like world line C of an observer moving in a circle in 3-d
space, given in Minkowski space-time coordinates by

x0 = x0
0 + u ,

x1 = x1
0 + a cos (ωu/c) ,

x2 = x2
0 + a sin (ωu/c) , (1)

x3 = x3
0 ,

where xi0 are constants, u is a parameter along the world line, and c is the
speed of light in an inertial frame in vacuum. The observer travels in a circle
in the x-y plane (see fig. 1). Along his world line, the observer travels with
a 4-velocity ui = dxi/ds and acceleration

wi =
δui

δs
=

dui

ds
+ Γijku

juk , (2)

Figure 1. Observer’s
circular 3-d path is shown
against background of
global inertial Minkowski
coordinates xi. At proper
time s = 0, observer is at
point A. At proper time
s > 0, observer is at point
B. Origin of Fermi
coordinates is at current
position of observer.
Orientation of Fermi
coordinate axes X(a) is
shown schematically at a
given proper time s.

X

X

ω

A

B

a

x1

x2

(2)

(1)
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where Γijk is the affine connection. The normalization of the 4-velocity,
uiui = −1, provides the relation between the arc length, s = cτ , where τ is
the proper time, and the parameter u = γs, where γ = (1−ν2)−1/2. (See the
appendix for the conventions used here.) The parameter ν is the dimension-
less velocity, given by ν = aω/c. Since the affine connection components all
vanish in Minkowski space, the explicit expressions for the 4-velocity and
acceleration are

ui(s) = γ

(
1,−aω

c
sin

(γω

c
s
)
,
aω

c
cos

(γω

c
s
)
, 0

)
, (3)

wi = −aγ2
(ω

c

)2
(

0, cos
(γω

c
s
)
, sin

(γω

c
s
)
, 0

)
. (4)

As the observer moves on the time-like world line C, he carries with him
an ideal clock and three gyroscopes. At some initial coordinate time x0,
the observer is at point P0 at proper time τ = s/c = 0. On his world line,
the observer carries with him three orthonormal basis vectors λi(α), where
α = 1, 2, 3 labels the vectors and i = 0, 1, 2, 3 labels the components of
these vectors in Minkowski coordinates. These vectors form the basis for
his measurements [12] (see fig. 2). The orientation of each basis vector is
held fixed with respect to each of the gyroscopes’ axes of rotation [25]. The
fourth basis vector is taken to be the observer 4-velocity, λi(0) = ui. The four
unit vectors λi(a) form the observer’s tetrad, which is an orthonormal set of
vectors at P0,

gij λ
i
(a) λ

j
(b) = η(ab) , (5)

where the matrix η(ab) = gab is the Minkowski metric (see the appendix).

At a later time s = cτ , the observer is at a point P . The observer’s orthonor-
mal set of basis vectors is related to his tetrad basis at P0 by Fermi-Walker
transport. Fermi-Walker transport preserves the lengths and relative angles
of the transported vectors. For an arbitrary vector with contravariant com-
ponents f i, its components at P are related to its components at P0 by the
Fermi-Walker transport differential equations [6]:

δf i

δs
= W ijfj , (6)

where

W ij = uiwj − wiuj . (7)
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Figure 2. Observer’s
world line C is shown with
initial tetrad basis vectors
λi(α) at s = 0 at point P0.
Fermi transported tetrad
basis vectors at finite
proper time s are shown at
point P .

C

(1)λi

(1)
λi

(2)λi

(2)λi

(3)
λi

(3)
λi

(0)λi

ui = λi

P´

s

s = 0
P0

σ
P

µi

(0)

When we use equation (6) to transport a vector f i that is orthogonal to the
4-velocity, uifi = 0, the second term in equation (7) does not contribute.
We refer to transport of such space-like basis vectors as Fermi transport,
and W ij → W̃ ij = uiwj . For an arbitrary vector f i perpendicular to the
4-velocity, the explicit form of the Fermi transport differential equations for
the world line in equation (1) is

df0

dξ
= −γ3ν cos (γξ) f1 − γ3ν sin (γξ) f2 , (8)

df1

dξ
= γ3ν2 cos (γξ) sin (γξ) f1 + γ3ν2 sin2 (γξ) f2 , (9)

df2

dξ
= −γ3ν2 cos2 (γξ) f1 − γ3ν2 cos (γξ) sin (γξ) f2 , (10)

df3

dξ
= 0 , (11)

where the components f i are functions of ξ and the dimensionless proper
time is given by ξ = ωs/c. The differential equations (8) to (11) are identical
to the equations that describe the Thomas precession of an electron’s spin
vector as it moves in a circular orbit around the nucleus [26]. The solution
of equations (8) to (11) is given by

f0 = −γνA cos
(
γ2ξ + α

)
+ β , (12)

f1 = A cos (γξ) cos
(
γ2ξ + α

)
+ Aγ sin (γξ) sin

(
γ2ξ + α

)
, (13)

f2 = A sin (γξ) cos
(
γ2ξ + α

)
−Aγ cos (γξ) sin

(
γ2ξ + α

)
, (14)

f3 = δ , (15)

where A, α, β, and δ are integration constants.
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4. Determination of the Tetrad

At the point P0, the tetrad basis vectors satisfy equation (5). These equa-
tions constitute 12 relations (since eq (5) is symmetric in α and β) for 16
components λi(a). However, the zeroth member of the tetrad is the 4-velocity,
which is assumed known,

λi(0) = ui = γ
(
1, v1, v2, v3

)
, (16)

and is given by equation (3). Equation (5) can be rewritten as two equations:

gijλ
i
(α)λ

j
(0) = 0, α = 1, 2, 3 , (17)

gijλ
i
(α)λ

j
(β) = δαβ , α, β = 1, 2, 3 , (18)

where δαβ = 1 if α = β and 0 otherwise. Substituting the explicit form of
the Minkowski metric into equation (17) gives a condition on the zeroth
components of a tetrad vector if the spatial components are known (Greek
indices take values α, κ =1, 2, 3):

λ0
(α) = δβκv

βλκ(α) . (19)

The use of equation (19) to eliminate the time components λ0
(α) from equa-

tion (18) leads to an orthogonality relation for only the spatial components
of the tetrad vectors:

δµνλ
µ
(α)λ

ν
(β) − δµνδκγv

µvκλν(α)λ
γ
(β) = δαβ . (20)

The general idea is to solve equation (20) for the spatial components of the
tetrad at s = 0, and then to substitute the spatial components into equation
(19) to obtain the time components of each tetrad vector. Thus, I obtain the
tetrad vectors at the initial time corresponding to s = 0. For each tetrad
vector, I use these components as initial conditions in equations (12) to (15)
to determine the tetrad components at point P at finite s.

The exact solution of equation (20) can be obtained if we note that for vα =
0, the spatial components of the tetrad vectors are orthonormal, and the
solution is given by

λµ(α) = δµα . (21)
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I assume that the tetrad unit vectors are oriented approximately parallel
to the observer’s local Cartesian x, y, and z axes. For small vα � 1, the
solution of equation (20) can be obtained as a triple power series in vα,
by iteration, starting with equation (21) as the first approximation. Having
solved for the tetrad components as a power series, it is easy to guess the
exact solution to be

λ0
(α) = γδαβv

β , (22)

λµ(α) = δµα +
γ − 1
ν2

δκαv
κvµ , (23)

λi(0) = ui = γ
(
1, v1, v2, v3

)
. (24)

where the components of dimensionless velocity vα are given in equa-
tion (3). Equations (22) to (24) give the components of the observer’s tetrad
basis vectors at point P0. At point P , the arc length is s > 0, and equations
(22) to (24) give the initial components for each tetrad vector. These initial
components are used in the general solution of a Fermi-Walker transported
vector, given in equations (12) to (15). The tetrad components at point P at
finite s are given by

λi(0) = {γ,−γν sin(γξ), γν cos(γξ), 0} , (25)

λi(1) =
{
−γν sin(γ2ξ), cos(γξ) cos(γ2ξ) + γ sin(γξ) sin(γ2ξ), cos(γ2ξ) sin(γξ)

− γ cos(γξ) sin(γ2ξ), 0
}

, (26)

λi(2) =
{
γν cos(γ2ξ),−γ cos(γ2ξ) sin(γξ) + cos(γξ) sin(γ2ξ), γ cos(γξ) cos(γ2ξ)

+ sin(γξ) sin(γ2ξ), 0
}

, (27)

λi(3) = {0, 0, 0, 1} . (28)

Equations (25) to (28) are valid for all proper times s, because they are exact
solutions of equations (8) to (11) and they satisfy the orthogonality relations
in equation (5) along the observer’s world line C.
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5. Fermi Coordinates

Fermi coordinates are defined by the geometric construction shown in fig-
ure 2. Every event P ′ in space-time has coordinates xi ′ in the global inertial
coordinate system. According to the observer moving in circular motion
along a time-like world line, the same event has the Fermi coordinates X(a),
a = 0, 1, 2, 3. The first Fermi coordinate, X(0) = s, is just the proper time
(in units of length) associated with the event P ′. The proper time for P ′ is
defined as the value of arc length s such that a space-like geodesic from
point P passes through event P ′, where the tangent vector of this geodesic,
µi, is orthogonal to the observer 4-velocity at P :

µi ui|P = 0 . (29)

For the simple case of Minkowski space, the geodesic connecting the points
P and P ′ is simply a straight line,

µi = N(xi ′ − xi(γs)) , (30)

where xi(u) and xi ′ are the coordinates of P and P ′, respectively, in the
global inertial frame, and N is a normalization constant that makes µi a
unit vector. The orthogonality condition in equation (29) is

gij µ
i(s)λj(0)(s) = 0 (31)

and gives an implicit equation for s for a given P ′. This orthogonality con-
dition gives the first Fermi coordinate of the point P ′,

X(0) = s , (32)

and equation (31) gives s as an implicit equation:

γs = x0 ′ − x0
0 + ν

[(
x1 ′ − x1

0

)
sin

(γωs

c

)
−

(
x2 ′ − x2

0

)
cos

(γωs

c

)]
. (33)

In the limit of small speeds of the observer, ν → 0, equation (33) gives
s = x0 ′ − x0

0. For ν � 1, equation (33) can be solved for s by iteration,
resulting in a power series in ν:
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X(0) = s = ∆x0 +
[
∆x1 sin

(
∆x0ω

c

)
−∆x2 cos

(
∆x0ω

c

)]
ν − 1

2
∆x0ν2

− 1
2a

[
−a + 2∆x1 cos

(
∆x0ω

c

)
+ 2∆x2 sin

(
∆x0ω

c

)]

×
[
∆x2 cos

(
∆x0ω

c

)
−∆x1 sin

(
∆x0ω

c

)]
ν3 + O(ν)4 , (34)

where ∆xi = xi ′ − xi0. For future reference, I label the coordinates of P ,
P ′, and P0 in the global inertial frame by P ′ = (x0 ′, x1 ′, x2 ′, x3 ′), P =
(x0, x1, x2, x3), and P0 = (x0

0, x
1
0, x

2
0, x

3
0).

The contravariant spatial Fermi coordinates, X(α), α = 1, 2, 3, are defined
as [6]

X(α) = σµiλ
(α)
i = gij σ(s)µi(s) η(αβ) λj(β)(s) , (35)

where I used the Minkowski definition of space-time distance σ, along the
space-like geodesic between P and P ′:

σ2 = gij(xi ′ − xi)(xj ′ − xj) , (36)

where gij is the Minkowski metric and η(ij) = η(ij) = ηij is an invariant
matrix, which is numerically equal to the Minkowski metric. Since the pa-
rameter s in equation (35) is a function of P ′ coordinates xi′, s must be
eliminated by equation (34), so that X(α) are explicit functions of the global
inertial coordinates xi′. I have calculated the resulting coordinate transfor-
mation correct to fourth order in ν. However, since the expressions are com-
plicated, I write them here correct only to third order in ν:

X(1) = ∆x1 − a cos
(

∆x0ω

c

)
+

1
4

[
∆x1 −∆x1 cos

(
2∆x0ω

c

)
−∆x2 sin

(
2∆x0ω

c

)]
ν2

+
1
2a

∆x0

[
−∆x2 + a sin

(
∆x0ω

c

)]
ν3 + O(ν)4 , (37)

X(2) = ∆x2 − a sin
(

∆x0ω

c

)
+

1
4

[
∆x2 + ∆x2 cos

(
2∆x0ω

c

)
−∆x1 sin

(
2∆x0ω

c

)]
ν2

+
1
2a

∆x0

[
∆x1 − a cos

(
∆x0ω

c

)]
ν3 + O(ν)4 , (38)

X(3) = ∆x3 . (39)
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The inverse transformation can be obtained from equations (37) to (39) by
iteration and some tedious algebra:

x0 ′ − x0
0 = X(0) +

[
X(2) cos

(
ωX(0)

c

)
−X(1) sin

(
ωX(0)

c

)]
ν +

1
2
X(0)ν2 + O(ν)3 , (40)

x1 ′ − x1
0 = X(1) + a cos

(
ωX(0)

c

)

+
1
4

[
X(1) −X(1) cos

(
2ωX(0)

c

)
−X(2) sin

(
2ωX(0)

c

)]
ν2 + O(ν)3 , (41)

x2 ′ − x2
0 = X(2) + a sin

(
ωX(0)

c

)

+
1
4

[
X(2) + X(2) cos

(
2ωX(0)

c

)
−X(1) sin

(
2ωX(0)

c

)]
ν2 + O(ν)3 , (42)

x3 ′ − x3
0 = X(3) . (43)

12



6. Metric in Fermi Coordinates

The space-time interval in the Fermi coordinate system of the observer is

ds2 = −G(ij) dX
(i) dX(j) , (44)

where G(ij) are the metric tensor components when the X(i) are used as
coordinates. A direct calculation of the metric tensor components from the
tensor transformation rule,

G(ij) = gkl
∂xk

∂X(i)

∂xl

∂X(j)
, (45)

using the transformation equations (40) to (43) and the Minkowski metric
for gij , gives G(αβ) = δαβ , G(0α) = 0, and

G(00) = −(1 + ζ)2 , (46)

where ζ is given by

ζ =
[
1− ∆x1

a
cos

(
ω∆x0

c

)
− ∆x2

a
sin

(
ω∆x0

c

)]
ν2 + O(ν4) . (47)

Using the transformation equations (40) to (43) to express ζ as a function of
the Fermi coordinates, I obtain

ζ = −1
a

[
X(1) cos

(ω

c
X(0)

)
+ X(2) sin

(ω

c
X(0)

)]
ν2 + O(ν4) . (48)

The result in equation (46) agrees with the general theory of Synge [6], spe-
cialized to flat space. Synge shows that

ζ = X(β) w
(β) = η(αβ) X

(α) w(β) = η(αβ) X
(α) wi λ

(β)
i . (49)

To third order in ν, equation (48) agrees with the general theory given by
Synge. The quantities X(β) = η(αβ) X

(α) are the covariant Fermi coordi-

nates, and w(β) = wi λ
(β)
i are the components of the observer’s 4-acceleration

in the Fermi coordinate system. The 4-acceleration wi is related to the ordi-
nary 3-d acceleration aβ, β = 1, 2, 3, by

wi =
γ2

c2
d2xi

dt2
=

γ2

c2
ai . (50)
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Using this relation, we can write ζ in terms of the global inertial coordinates
of P and P ′ as

ζ =
γ2

c2
δαβ

(
xα ′ − xα(s)

)
aβ . (51)

For the circular motion treated here, from equation (48), the three spatial
components of the observer’s acceleration in Fermi coordinates are given
by

w(β) = −ν2

a

(
cos

(ω

c
X(0)

)
, sin

(ω

c
X(0)

)
, 0

)
(52)

where I have dropped fourth-order terms in ν. To third order in ν, the ob-
server’s acceleration is just the classical centripetal acceleration for an ob-
server moving in a circle.

The quantity c2ζ is a time-dependent potential that determines the rate of
proper time with respect to coordinate time in Fermi coordinates. Proper
time is kept by an ideal clock. Coordinate time depends on the definition of
the reference frame and coordinates used within that frame. The quantity
ζ, given in equation (51), depends on acceleration aβ and the difference in
coordinates, xα ′ − xα(s), from the spatial origin of the Fermi coordinates.
Away from the spatial origin of Fermi coordinates, the acceleration pro-
duces a periodic time-dependent effective gravitational potential field c2ζ,
which leads to a change in the relation of coordinate time to proper time,
through the metric components G(ij).

14



7. Apparent Behavior of Clocks in Fermi Coordinates

The significance of proper time is that it is the quantity that ideal clocks
keep, that it may be related to time on real clocks, and that it is closely
related to measurable quantities. The significance of coordinate time is that
it enters into the theory that defines the space-time grid. In order to analyze
experiments with clocks, we must relate what is measured (i.e., proper time
intervals between space-time events) to coordinate positions and times of
these events.

Consider an ideal clock whose world line is given in Fermi coordinates by
X(i) = X(i)(X(0)). At coordinate times X

(0)
A and X

(0)
B , the clock is at spatial

positions X
(α)
A and X

(α)
B , respectively. The elapsed proper time between

these two events, ∆τ = ∆s/c, is given by the integral along the world line
of the clock:

∆s =
∫ B

A

(
−G(ij)

dX(i)

dX(0)

dX(j)

dX(0)

)1/2

dX(0) . (53)

7.1 Stationary Clock

For the case of a stationary clock, located at constant Fermi coordinate po-
sition X(α), we obtain the relation between proper time τ and coordinate
time X(0) by taking dX(α) = 0 in equation (44). The rate of proper time with
respect to coordinate time is then given by

ds

dX(0)
= 1 + ζ

(
X(0), X(α)

)
. (54)

Equation (54) is a special case of the well-known result that the rate of
proper time depends on the location of the clock [31]. For the simple case of
circular motion of the observer with ζ given by equation (48), substitution
in equation (54) and integration from X

(0)
A to X

(0)
B gives

∆s = X
(0)
B −X

(0)
A −

aω

c

{
X(1)

[
sin

(ω

c
X

(0)
B

)
− sin

(ω

c
X

(0)
A

)]
− X(2)

[
cos

(ω

c
X

(0)
B

)
− cos

(ω

c
X

(0)
A

)]}
, (55)

where I have dropped terms of O(ν4). Equation (55) shows that there is
a complicated relation between elapsed proper time on a clock located at
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Fermi coordinate position (X(1), X(2)) and Fermi coordinate time X(0). For
example, a clock on the X(1) axis (with X(2) = 0) has a periodic time with
respect to the observer’s Fermi coordinate time, given by ∆s = X

(0)
B −

(aω/c)X(1) sin(ωX(0)
B /c). The amplitude and sign of this periodicity de-

pend on X(1), the clock’s spatial Fermi coordinate. The initial conditions
in equation (55) determine complicated phase relations between proper
time and coordinate time. This complicated behavior can, of course, be
understood if we consider the clock’s complicated motion in the global
Minkowski coordinate system.

7.2 Clock in Circular Motion

Now consider an ideal clock that is a distance b from the origin of Fermi
coordinates and that executes circular motion in Fermi coordinates in the
X(1)-X(2) plane. I take the world line for this motion to be given by

X(1) = b cos
(

Ω
c
X(0)

)
, (56)

X(2) = b sin
(

Ω
c
X(0)

)
, (57)

X(3) = 0 . (58)

The clock moves in the X(1)-X(2) plane, which coincides with the plane
defined by the circular motion of the origin of Fermi coordinates (see fig. 2).
Substitution of the satellite clock’s world line into equation (53) leads to the
following relation between elapsed proper time observed on the clock and
Fermi coordinate time:

∆s =

[
1− 1

2

(
bΩ
c

)2
] (

X
(0)
B −X

(0)
A

)

− ab

c

ω2

Ω− ω

[
sin

(
Ω− ω

c
X

(0)
B

)
− sin

(
Ω− ω

c
X

(0)
A

)]
. (59)

The rate of proper time with respect to coordinate time is

ds

dX(0)
= −1

2

(
bΩ
c

)2

−
(ω

c

)2
ab cos

(
Ω− ω

c
X(0)

)
. (60)

The proper time has a constant rate offset from coordinate time, repre-
sented by the first term in equation (59). In addition, the proper time has a
periodic component with respect to coordinate time, given by the second
term in equation (59).
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To demonstrate the magnitude of these effects, I use parameters that cor-
respond to the Earth orbiting the sun and to GPS satellites orbiting the
Earth [24]. I compute magnitudes of the following terms with the values
shown in table 1:

1
2

(
bΩ
c

)2

= 8.348× 10−11 , (61)

1
2

(
bΩ
c

)2

× 2π
Ω

= 3.597× 10−6 s . (62)

Equation (61) gives the constant rate offset of the moving clock with respect
to Fermi coordinate time, due to time dilation. In the GPS, this term leads
to a net slowing down of GPS clocks by approximately 7 µs per day [5],
which results from multiplying the value given in equation (62) for a single
revolution by a factor of 2 (since the GPS satellites make approximately two
revolutions per Earth day).

The second term in equation (59) is a periodicity of the proper time with
respect to Fermi coordinate time, with amplitude

ab

c2
ω2

Ω− ω
= 12.05× 10−9 s , (63)

which corresponds to an amplitude in the rate of

ab
(ω

c

)2
= 1.755× 10−12 . (64)

The proper time given by equation (59) is periodic with respect to Fermi co-
ordinate time with the difference frequency Ω − ω, which is the difference
frequency between satellite and observer rotations. This is a kinematic ef-
fect due to the type of coordinate system used (Fermi coordinates) and the
fact that the observer (the Fermi coordinate frame) is moving along an arc
of a circle, and therefore experiences an acceleration. Note that the periodic
term vanishes when the observer angular velocity ω = 0. If the observer
were moving in a straight line and hence had zero acceleration, wi = 0,

Table 1. Numerical values
of constants.

Constant Definition Value

a Earth orbital semi-major axis 1.496 × 1011 m

ω Earth orbital angular velocity 1.99238 × 10−7 s−1

b GPS satellite semi-major axis 2.656177 × 107 m

Ω GPS satellite angular velocity 1.45842 × 10−4 s−1

c Vacuum speed of light 2.997924 × 108 m/s
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the periodic effect would also be absent, as can be seen from the general
equation (49). Although these kinematic effects are present in the GPS, one
must be careful in applying these results to GPS because gravitational ef-
fects have been neglected in this calculation and including them would
significantly modify the results [17,21].

7.3 Sagnac-Like Effect for Portable Clocks

Sagnac demonstrated that there is a phase shift between two counterpropa-
gating light beams on a rotating platform and that this phase shift depends
on the angular frequency of rotation of the platform [27,28,30]. In the Fermi
coordinates of the observer moving in a circle, there is a Sagnac-like effect
for two portable clocks that are orbiting in opposite directions.

Consider a clock that moves eastward along a circle of radius b in the equa-
torial plane of the Fermi coordinates with world line given by equations
(56) to (58) (see fig. 2). The speed of the clock in Fermi coordinates is bΩ/c.
Assuming that the clock begins its journey at point A at time X

(0)
A = 0 and

ends it at X(0)
B = 2πc/Ω (which corresponds to one revolution), the proper

time that elapses on the clock is given by equation (59) as

∆s+ =

[
1− 1

2

(
bΩ
c

)2
]

2π
Ω

c +
ab

c

ω2

Ω− ω
sin

(
2π

ω

Ω

)
. (65)

The first term in equation (65) is the time dilation due to the speed bΩ/c of
the clock. The second term depends on the path traversed.

Next, consider an identical clock that starts at point A at time X
(0)
A = 0 but

moves westward. The world line of this clock is then given by equations
(56) to (58) but with Ω = −|Ω|. The proper time on this clock is given by

∆s− =

[
1− 1

2

(
bΩ
c

)2
]

2π
|Ω|c−

ab

c

ω2

|Ω|+ ω
sin

(
2π

ω

|Ω|

)
. (66)

When the east-moving and west-moving clocks have each made one rev-
olution and they have returned to their starting positions at point A, the
difference in their times is given by ∆τ+ −∆τ− = (∆s+ −∆s−)/c. For the
case b � a and ω � |Ω| (as is the case with Earth satellites), the difference
of proper time on the two clocks is given by

τ+ − τ− = 2
b

a

(aω

c

)2 |Ω|
Ω2 − ω2

sin
(

2π
ω

|Ω|

)

= 4π
b

a

(aω

c

)2 ω

Ω2
+ O

(
ω2

Ω2

)
, (67)
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where in the last line I have dropped terms of O(ω2/Ω2). This Sagnac-type
effect is due to the noninertial nature of the Fermi coordinate system. The
origin of this effect can be understood from the point of view of the global
inertial coordinate system. If the Fermi coordinate origin moved along a
straight line in 3-d space (rather than a circle), then there would be no ac-
celeration and ζ = 0. In this case, the east-moving and west-moving clocks
would have zero time difference after one revolution. However, since the
origin of the Fermi coordinates moves along a helix, there is an acceler-
ation that picks out a direction in the Fermi coordinate space-time, and
the symmetry between the two clock world lines is broken. Consequently,
the elapsed proper time is different on the two clocks when they are com-
pared after one revolution. Note that the time difference on the two clocks
increases with increasing angular velocity of rotation ω, analogous to the
effect observed by Sagnac [27]. This increase arises because the breaking
of symmetry is due to the magnitude of the acceleration w(β) (see eq (49)).
For values of the parameters appropriate to GPS satellites, given in table
1, I find the magnitude of the time difference on the two clocks after one
revolution to be

τ+ − τ− = 2.066× 10−10 s . (68)

This is a small effect, which vanishes when the origin of Fermi coordinates
moves along a straight line or when ω = 0.
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8. Coordinate Speed of Light

The 3-d space of Minkowski space-time is homogeneous and isotropic, and
the speed of light is independent of position and direction of propagation.
However, for the case of Fermi coordinates of an observer moving in a cir-
cle, the symmetry of the 3-d space is broken by an acceleration, and the
coordinate speed of light depends on position in the 3-d space.

For a general space-time metric gij , the coordinate speed of light vc in the
direction of a unit vector eα is given by Möller [29]:

vc =
√−g00

1 + γαeα
c , (69)

where

γα =
g0α√−g00

(70)

and the unit vector satisfies the relation γαβ e
α eβ = 1, where the 3-d spatial

metric is given by [31]

γαβ = gαβ −
g0α g0β

g00
. (71)

Equation (69) shows that for a general space-time metric, the speed of
light depends on direction eα and on position and time, through the met-
ric components. A nonzero off-diagonal metric component g0α leads to
an anisotropy (directional dependence) of the coordinate speed of light.
The metric for Fermi coordinates given in equation (46) has vanishing off-
diagonal terms, γα = 0, and consequently the coordinate speed of light is
isotropic. However, the metric component G(00) has a nontrivial position
and time dependence, and equation (69) gives the coordinate speed of light
as vc = c (1 + ζ), where ζ is a function of Fermi coordinate position and
time, given by equation (48). Therefore, the coordinate dependence of the
speed of light is

∆c

c
= −ν2

a

[
X(1) cos

(ω

c
X(0)

)
+ X(2) sin

(ω

c
X(0)

)]
+ O(ν4) . (72)

This variable speed of light is a kinematic effect due to the noninertial
nature of the Fermi coordinate system. Note that at any given position
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X = {X(1), X(2), X(3)}, the speed of light depends on time in a periodic
way, with the orbital period of the reference frame, ω. This expression can
be rewritten as

∆c

c
= a

(ω

c

)2
X · n̂ + O(ν4) , (73)

where the unit vector n̂ =
(
− cos

(
ω
cX

(0)
)
,− sin

(
ω
cX

(0)
)
, 0

)
is in the ob-

server’s orbital plane and points in the direction of acceleration, toward the
center of the circle (see fig. 3). As the Fermi reference frame moves around
the circle, the vector n̂ always points toward the circle’s center in Fermi co-
ordinates. At any given time X(0), equation (73) shows that to second order
in ν, in the plane given by

X · n̂ = 0 , (74)

the speed of light does not differ from its vacuum inertial frame value c. In
the 3-d half-space containing positions X closer to the center of the circle,
the speed of light is increased. In contrast, in the 3-d half-space containing
positions X that are farther from the center of the circle, the speed of light
is decreased. As time X(0) increases, the dividing plane, given by equation
(74), rotates at angular frequency ω around the circle, with the origin of
Fermi coordinates remaining the point at which the plane is tangent to the
circle.

The magnitude of the inhomogeneous variation in the speed of light in
equation (72) is small. For the kinematics of Earth satellites such as GPS,

Figure 3. Global inertial
coordinate axes xi and
Fermi coordinates X(a) are
shown in relation to
coordinate position X, unit
vector n̂, and plane
X · n̂ = 0, at a given
coordinate time X(0).

X (1)

X (2)

n̂

X

x1

x2

plane

21



with the numbers given in table 1 and the coordinates X(1), X(2) ∼ b, the
effect has a magnitude

ν2

a
b = 1.755× 10−12 (75)

and has a complicated position and time dependence, given by equation
(72). Recently, GPS data have been used [32] in obtaining an upper bound
on the anisotropy of the speed of light: ∆c/c < 10−9. Given the present
accuracy of GPS [24], the small inhomogeneity of the speed of light given
by equation (72) is probably not measurable.
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9. Summary

In this report I present a detailed calculation of the coordinate transforma-
tion from global Minkowski coordinates to the Fermi coordinates of an ob-
server moving in a plane around a circle in 3-d space. The transformation is
valid for arbitrarily long coordinate time (not a power series in time). The
observer’s axes are Fermi-Walker transported along his helical world line. I
considered two cases: stationary clocks (with respect to Fermi coordinates)
and satellite clocks in circular orbit with respect to Fermi coordinates. The
proper time interval between two events on the stationary clock, given by
equation (55), is a complicated periodic function of the clock’s Fermi coor-
dinate time and coordinate position in the plane perpendicular to the rota-
tion axis. I considered next a clock that orbits the Fermi coordinate origin
(similar to a satellite) in the equatorial plane of rotation and computed the
relation of proper time to coordinate time. I find that the proper time on the
clock has time dilation (constant rate offset) plus a periodic dependence on
Fermi coordinate time at the difference frequency, Ω − ω, between satellite
clock orbital frequency Ω and Fermi coordinate frame orbital frequency ω.

Next, I looked at the time difference of two counter-orbiting clocks in the
equatorial plane of rotation, one west-moving and the other east-moving.
After one revolution, the difference in proper time on the clocks shows a
small Sagnac-like effect, increasing with the angular frequency of revolu-
tion of the Fermi frame, ω, given by equation (67) .

Finally, I computed the coordinate speed of light in the Fermi coordinates.
The speed of light is isotropic but depends on Fermi coordinate position
and time. Equation (73) gives the change in the speed of light from its vac-
uum value in an inertial frame. In order to illustrate the magnitude of these
effects, I have used numbers relevant to GPS satellite orbits and Earth or-
bital frequency.
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Appendix. Conventions

I use Roman indices, i, a = 0, 1, 2, 3, on space-time coordinates xi and Greek
indices, α = 1, 2, 3, for spatial coordinates. The proper time interval be-
tween two events in Minkowski space-time is dτ = ds/c, where

ds2 = −gij dxi dxj ; (A-1)

here, g00 = −1, gαβ = δαβ , and g0α = 0. In Fermi coordinates, X(a), a =
0, 1, 2, 3, the interval is

ds2 = −G(ab) dX
(a) dX(b) . (A-2)
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